Vector Analysis


09 Feb 2014


Contents

Zylinderkoordinaten

Geschwindigkeit und Beschleunigung in Zylinderkoordinaten

Gradient in Zylinderkoordinaten

Divergenz in Zylinderkoordinaten

Laplace in Zylinderkoordinaten

Rotation in Zylinderkoordinaten

Kugelkoordinaten

Inverse Transformationsgleichungen

Geschwindigkeit und Beschleunigung in Kugelkoordinaten

Gradient in Kugelkoordinaten

Divergenz in Kugelkoordinaten

Rotation in Kugelkoordinaten

Krummlinige Koordinatensysteme

Bogenlänge

Gradient

Divergenz

Rotation

Vektoridentitäten



Zylinderkoordinaten

Zylinder-Koordinaten sind durch folgende Transformationsgleichungen definiert.

$$ \vec{r} = x { \vec{e} }_{ x} + y { \vec{e} }_{ y} + z { \vec{e} }_{ z}$$

$$ \vec{r} = \left( \begin{array}{c} r \cos { \varphi } \\ r \sin { \varphi } \\ z \end{array}\right) \tag{4}$$
$$\begin{eqnarray} x \left( {r,\varphi ,z} \right) &=& r \cos { \varphi } \\ y \left( {r,\varphi ,z} \right) &=& r \sin { \varphi } \\ z \left( {r,\varphi ,z} \right) &=& z\end{eqnarray}$$
$$\begin{eqnarray}\, dx &=& \frac{\, \partial x}{\, \partial r}\, dr + \frac{\, \partial x}{\, \partial \varphi }\, d\varphi + \frac{\, \partial x}{\, \partial z}\, dz \\ \, dy &=& \frac{\, \partial y}{\, \partial r}\, dr + \frac{\, \partial y}{\, \partial \varphi }\, d\varphi + \frac{\, \partial y}{\, \partial z}\, dz \\ \, dz &=& \frac{\, \partial z}{\, \partial r}\, dr + \frac{\, \partial z}{\, \partial \varphi }\, d\varphi + \frac{\, \partial z}{\, \partial z}\, dz\end{eqnarray}$$
$$\begin{eqnarray}\, dx &=& \cos { \varphi } \, dr - r \sin { \varphi } \, d\varphi \\ \, dy &=& \sin { \varphi } \, dr + r \cos { \varphi } \, d\varphi \\ \, dz &=&\, dz\end{eqnarray}$$
Das begleitende Dreibein in Zylinderkoordinaten ergibt sich wie folgt:

$$\begin{eqnarray} { \vec{e} }_{ r} &=& \frac{ \frac{ \partial \vec{r}}{\, \partial r}}{ \left| { \frac{ \partial \vec{r}}{\, \partial r}} \right|} \\ { \vec{e} }_{ \varphi } &=& \frac{ \frac{ \partial \vec{r}}{\, \partial \varphi }}{ \left| { \frac{ \partial \vec{r}}{\, \partial \varphi }} \right|} \\ { \vec{e} }_{ z} &=& \frac{ \frac{ \partial \vec{r}}{\, \partial z}}{ \left| { \frac{ \partial \vec{r}}{\, \partial z}} \right|}\end{eqnarray}$$

$$\begin{eqnarray} \frac{ \partial \vec{r}}{\, \partial r} &=& \left( \begin{array}{c} \cos { \varphi } \\ \sin { \varphi } \\ 0 \end{array}\right) \\ \frac{ \partial \vec{r}}{\, \partial \varphi } &=& \left( \begin{array}{c} - r \sin { \varphi } \\ r \cos { \varphi } \\ 0 \end{array}\right) \\ \frac{ \partial \vec{r}}{\, \partial z} &=& \left( \begin{array}{c} 0\\ 0\\ 1 \end{array}\right)\end{eqnarray}$$Wir erhalten daraus:

$$\begin{eqnarray} { \vec{e} }_{ r} &=& \left( \begin{array}{c} \cos { \varphi } \\ \sin { \varphi } \\ 0 \end{array}\right) \\ { \vec{e} }_{ \varphi } &=& \left( \begin{array}{c} - \sin { \varphi } \\ \cos { \varphi } \\ 0 \end{array}\right) \\ { \vec{e} }_{ z} &=& \left( \begin{array}{c} 0\\ 0\\ 1 \end{array}\right)\end{eqnarray}$$
$$\begin{eqnarray} \frac{ \partial \vec{r}}{\, \partial r} &=& { \vec{e} }_{ r} \\ \frac{ \partial \vec{r}}{\, \partial \varphi } &=& r { \vec{e} }_{ \varphi } \\ \frac{ \partial \vec{r}}{\, \partial z} &=& { \vec{e} }_{ z}\end{eqnarray}$$Wir erhalten daraus:

Wir können durch Bildung von Skalarprodukten leicht zeigen, dass diese Einheitsvektoren senkrecht aufeinander stehen.

Der Ortsvektor in Zylinderkoordinaten lautet

$$ \vec{r} = r { \vec{e} }_{ r} + z { \vec{e} }_{ z}$$

Der Ortsvektor kann sich nur solcher Einheitsvektoren des begleitenden Dreibeins bedienen, die nicht von sich selbst abhängen. Da $ { \vec{e} }_{ \varphi }$ von $ \varphi $ abhängt, lassen wir ihn weg. Jeder Punkt im Raum ist mit dem obigen Ortsvektor erreichbar. Der Ortsvektor ergibt sich auch durch Vergleich von Eq. 4 mit den berechneten Einheitsvektoren in Zylinderkoordinaten.

Geschwindigkeit und Beschleunigung in Zylinderkoordinaten

Bei der Berechnung der Geschwindigkeit ist die Zeitabhängigkeit der Einheitsvektoren zu berücksichtigen. $ { \vec{e} }_{ z}$ ist konstant, nicht so aber $ { \vec{e} }_{ r}$.

$$ \frac{d { \vec{r}} }{\, dt} = \frac{d { r} }{\, dt} { \vec{e} }_{ r} + r \frac{d\left( { { \vec{e} }_{ r}} \right)}{\, dt} + \frac{d { z} }{\, dt} { \vec{e} }_{ z}$$

$$\begin{eqnarray} \frac{ { \, \vec{de} }_{ r}}{\, dt} &=& \frac{ { \, \vec{de} }_{ r}}{\, dr} \frac{\, dr}{\, dt} + \frac{ { \, \vec{de} }_{ r}}{\, d\varphi } \frac{\, d\varphi }{\, dt} + \frac{ { \, \vec{de} }_{ r}}{\, dz} \frac{\, dz}{\, dt} \\ \frac{ { \, \vec{de} }_{ \varphi }}{\, dt} &=& \frac{ { \, \vec{de} }_{ \varphi }}{\, dr} \frac{\, dr}{\, dt} + \frac{ { \, \vec{de} }_{ \varphi }}{\, d\varphi } \frac{\, d\varphi }{\, dt} + \frac{ { \, \vec{de} }_{ \varphi }}{\, dz} \frac{\, dz}{\, dt} \\ \frac{ { \, \vec{de} }_{ z}}{\, dt} &=& \frac{ { \, \vec{de} }_{ z}}{\, dr} \frac{\, dr}{\, dt} + \frac{ { \, \vec{de} }_{ z}}{\, d\varphi } \frac{\, d\varphi }{\, dt} + \frac{ { \, \vec{de} }_{ z}}{\, dz} \frac{\, dz}{\, dt}\end{eqnarray}$$

$$\begin{eqnarray} \frac{ { \, \vec{de} }_{ r}}{\, dt} &=& \left( \begin{array}{c} - \sin { \varphi } \\ \cos { \varphi } \\ 0 \end{array}\right) \frac{\, d\varphi }{\, dt} \\ \frac{ { \, \vec{de} }_{ \varphi }}{\, dt} &=& \left( \begin{array}{c} - \cos { \varphi } \\ - \sin { \varphi } \\ 0 \end{array}\right) \frac{\, d\varphi }{\, dt} \\ \frac{ { \, \vec{de} }_{ z}}{\, dt} &=& 0\end{eqnarray}$$

Gradient in Zylinderkoordinaten

Es sei ein Skalarfeld $ \Phi $ gegeben. Das totale Differential lautet allgemein

$$\, d\Phi = \left( { \nabla \Phi } \right) \cdot \, \vec{dr} \tag{5}$$
und in Zylinderkoordinaten

$$\, d\Phi = \frac{\, \partial \Phi }{\, \partial r}\, dr + \frac{\, \partial \Phi }{\, \partial \varphi }\, d\varphi + \frac{\, \partial \Phi }{\, \partial z}\, dz \tag{6}$$

Für $ \nabla \Phi $ schreiben wir mit noch unbekannten Koeefizienzen $ { G }_{ i}$

$$\fbox{$ \displaystyle \nabla \Phi = { G }_{ r} { \vec{e} }_{ r} + { G }_{ \varphi } { \vec{e} }_{ \varphi } + { G }_{ z} { \vec{e} }_{ z} $} \tag{7}$$

Wir können $\, \vec{dr}$ allgemein wie folgt darstellen:

$$\, \vec{dr} = \frac{\, \vec{\partial r}}{\, \partial r}\, dr + \frac{\, \vec{\partial r}}{\, \partial \varphi }\, d\varphi + \frac{\, \vec{\partial r}}{\, \partial z}\, dz$$
Wegen

$$ \vec{r} = \left( \begin{array}{c} r \cos { \varphi } \\ r \sin { \varphi } \\ z \end{array}\right)$$

$$\begin{eqnarray} \frac{\, \vec{dr}}{\, dr} &=& \left( \begin{array}{c} \cos { \varphi } \\ \sin { \varphi } \\ 0 \end{array}\right) \\ \frac{\, \vec{dr}}{\, d\varphi } &=& \left( \begin{array}{c} - r \sin { \varphi } \\ r \cos { \varphi } \\ 0 \end{array}\right) \\ \frac{\, \vec{dr}}{\, dz} &=& \left( \begin{array}{c} 0\\ 0\\ 1 \end{array}\right)\end{eqnarray}$$wird daraus

$$\, \vec{dr} = \left( \begin{array}{c} \cos { \varphi } \\ \sin { \varphi } \\ 0 \end{array}\right)\, dr + \left( \begin{array}{c} - r \sin { \varphi } \\ r \cos { \varphi } \\ 0 \end{array}\right)\, d\varphi + \left( \begin{array}{c} 0\\ 0\\ 1 \end{array}\right)\, dz$$

$$\fbox{$ \displaystyle \, \vec{dr} = { \vec{e} }_{ r}\, dr + r { \vec{e} }_{ \varphi }\, d\varphi + { \vec{e} }_{ z}\, dz $}$$

Wenn wir die beiden eingerahmten Gleichungen in Eq. 5 einsetzen, erhalten wir

$$\begin{eqnarray}\, d\Phi &=& \left( \begin{array}{c} { G }_{ r}\\ { G }_{ \varphi }\\ { G }_{ z} \end{array}\right) \cdot \left( \begin{array}{c} \, dr\\ r\, d\varphi \\\, dz \end{array}\right) \\ \, d\Phi &=& { G }_{ r}\, dr + { G }_{ \varphi } r\, d\varphi + { G }_{ z}\, dz\end{eqnarray}$$
und dann durch Koeffizientenvergleich mit Eq. 6
$$\, d\Phi = \frac{\, \partial \Phi }{\, \partial r}\, dr + \frac{\, \partial \Phi }{\, \partial \varphi }\, d\varphi + \frac{\, \partial \Phi }{\, \partial z}\, dz$$

$$\begin{eqnarray} { G }_{ r} &=& \frac{\, \partial \Phi }{\, \partial r} \\ { G }_{ \varphi } &=& \frac{ 1}{ r} \frac{\, \partial \Phi }{\, \partial \varphi } \\ { G }_{ z} &=& \frac{\, \partial \Phi }{\, \partial z}\end{eqnarray}$$Da eingesetzt in Eq. 7 ergibt

$$\fbox{$ \displaystyle \nabla \Phi = \frac{\, \partial \Phi }{\, \partial r} { \vec{e} }_{ r} + \frac{ 1}{ r} \frac{\, \partial \Phi }{\, \partial \varphi } { \vec{e} }_{ \varphi } + \frac{\, \partial \Phi }{\, \partial z} { \vec{e} }_{ z} $} \tag{8}$$

Divergenz in Zylinderkoordinaten

$$ \mbox{div}\, { \vec{A}} = \frac{ 1}{ r} \left( { \frac{ \partial }{\, \partial r} \left( { { A }_{ r} r} \right) + \frac{ \partial }{\, \partial \varphi } { A }_{ \varphi } + \frac{ \partial }{\, \partial z} \left( { { A }_{ z} r} \right)} \right) \tag{2}$$

Laplace in Zylinderkoordinaten

Mitunter muss $ { \nabla }^{ 2} \Phi $ in Zylinderkoordinaten gebildet werden. Der Gradient ist ein Vektor-Feld.

$$ \nabla \Phi = \left( \begin{array}{c} \frac{\, \partial \Phi }{\, \partial r}\\ \frac{ 1}{ r} \frac{\, \partial \Phi }{\, \partial \varphi }\\ \frac{\, \partial \Phi }{\, \partial z} \end{array}\right) = \vec{A}$$

Wenn wir mit dem Nabla-Operator auf ein Vektorfeld gehen, bilden wir eine Divergenz. Damit können wir Eq. 2 anwenden. Wenn wir $ { A }_{ r}$, $ { A }_{ \varphi }$ und $ { A }_{ z}$ dieser Gelichung entnehmen und in MARK einsetzen, erhalten wir

$$ { \nabla }^{ 2} \Phi = \mbox{div}\, { \vec{A}} = \frac{ 1}{ r} \left( { \frac{ \partial }{\, \partial r} \left( { \frac{\, \partial \Phi }{\, \partial r} r} \right) + \frac{ \partial }{\, \partial \varphi } \left( { \frac{ 1}{ r} \frac{\, \partial \Phi }{\, \partial \varphi }} \right) + \frac{ \partial }{\, \partial z} \left( { \frac{\, \partial \Phi }{\, \partial z} r} \right)} \right)$$

$$\fbox{$ \displaystyle { \nabla }^{ 2} \Phi = \frac{ 1}{ r} \frac{ \partial }{\, \partial r} \left( { r \frac{\, \partial \Phi }{\, \partial r}} \right) + \frac{ 1}{ { r }^{ 2}} \frac{\, \partial \Phi }{ { \, \partial \varphi }^{ 2}} + \frac{{\partial }^{2} { \Phi } }{ { \, \partial z }^{ 2}} $}$$

Rotation in Zylinderkoordinaten

$$ \mbox{rot}\, { \vec{A}} = \frac{ 1}{ r} \left| { \begin{array}{ccc}
{ \vec{e} }_{ r} & r { \vec{e} }_{ \varphi } & { \vec{e} }_{ z}\\ \frac{ \partial }{\, \partial r} & \frac{ \partial }{\, \partial \varphi } & \frac{ \partial }{\, \partial z}\\ { A }_{ r} & r { A }_{ \varphi } & { A }_{ z}\\
\end{array}} \right| \tag{9}$$

$$ \mbox{rot}\, { \vec{A}} = \left( { \frac{ \partial { A }_{ z}}{\, \partial \varphi } - \frac{ \partial \left( { r { A }_{ \varphi }} \right)}{\, \partial z}} \right) { \vec{e} }_{ r} - \left( { \frac{ \partial { A }_{ z}}{\, \partial r} - \frac{ \partial { A }_{ r}}{\, \partial z}} \right) r { \vec{e} }_{ \varphi } + \left( { \frac{ \partial \left( { r { A }_{ \varphi }} \right)}{\, \partial r} - \frac{ \partial { A }_{ r}}{\, \partial \varphi }} \right) { \vec{e} }_{ z} \tag{3}$$
$$\fbox{$ \displaystyle \mbox{rot}\, { \vec{A}} = \left( { \frac{ 1}{ r} \frac{ \partial { A }_{ z}}{\, \partial \varphi } - \frac{ \partial { A }_{ \varphi }}{\, \partial z}} \right) { \vec{e} }_{ r} + \left( { \frac{ \partial { A }_{ r}}{\, \partial z} - \frac{ \partial { A }_{ z}}{\, \partial r}} \right) { \vec{e} }_{ \varphi } + \frac{ 1}{ r} \left( { \frac{ \partial \left( { r { A }_{ \varphi }} \right)}{\, \partial r} - \frac{ \partial { A }_{ r}}{\, \partial \varphi }} \right) { \vec{e} }_{ z} $}$$

Kugelkoordinaten

Zylinder-Koordinaten sind durch folgende Transformationsgleichungen definiert.

$$ \vec{r} = x { \vec{e} }_{ x} + y { \vec{e} }_{ y} + z { \vec{e} }_{ z}$$

$$ \vec{r} = \left( \begin{array}{c} r \cos { \alpha } \sin { \beta } \\ r \sin { \alpha } \sin { \beta } \\ r \cos { \beta } \end{array}\right) \tag{10}$$
$$\begin{eqnarray} x \left( {r,\alpha ,\beta } \right) &=& r \cos { \alpha } \sin { \beta } \\ y \left( {r,\alpha ,\beta } \right) &=& r \sin { \alpha } \sin { \beta } \\ z \left( {r,\alpha ,\beta } \right) &=& r \cos { \beta } \end{eqnarray}$$
$$\begin{eqnarray}\, dx &=& \frac{\, \partial x}{\, \partial r}\, dr + \frac{\, \partial x}{\, \partial \alpha }\, d\alpha + \frac{\, \partial x}{\, \partial \beta }\, d\beta \\ \, dy &=& \frac{\, \partial y}{\, \partial r}\, dr + \frac{\, \partial y}{\, \partial \alpha }\, d\alpha + \frac{\, \partial y}{\, \partial \beta }\, d\beta \\ \, dz &=& \frac{\, \partial z}{\, \partial r}\, dr + \frac{\, \partial z}{\, \partial \alpha }\, d\alpha + \frac{\, \partial z}{\, \partial \beta }\, d\beta \end{eqnarray}$$
$$\begin{eqnarray}\, dx &=& \cos { \alpha } \sin { \beta } \, dr - r \sin { \beta } \sin { \alpha } \, d\alpha + r \cos { \alpha } \cos { \beta } \\ \, dy &=& \sin { \alpha } \sin { \beta } \, dr + r \sin { \beta } \cos { \alpha } \, d\alpha + r \sin { \alpha } \cos { \beta } \\ \, dz &=& \cos { \beta } \, dr - r \sin { \beta } \, d\beta \end{eqnarray}$$

Das begleitende Dreibein in Zylinderkoordinaten ergibt sich wie folgt:

$$\begin{eqnarray} { \vec{e} }_{ r} &=& \frac{ \frac{ \partial \vec{r}}{\, \partial r}}{ \left| { \frac{ \partial \vec{r}}{\, \partial r}} \right|} \\ { \vec{e} }_{ \alpha } &=& \frac{ \frac{ \partial \vec{r}}{\, \partial \alpha }}{ \left| { \frac{ \partial \vec{r}}{\, \partial \alpha }} \right|} \\ { \vec{a} }_{ \beta } &=& \frac{ \frac{ \partial \vec{r}}{\, \partial \beta }}{ \left| { \frac{ \partial \vec{r}}{\, \partial \beta }} \right|}\end{eqnarray}$$
$$\begin{eqnarray} \frac{ \partial \vec{r}}{\, \partial r} &=& \left( \begin{array}{c} \cos { \alpha } \sin { \beta } \\ \sin { \alpha } \sin { \beta } \\ \cos { \beta } \end{array}\right) \\ \frac{ \partial \vec{r}}{\, \partial \alpha } &=& \left( \begin{array}{c} - r \sin { \alpha } \sin { \beta } \\ r \cos { \alpha } \sin { \beta } \\ 0 \end{array}\right) \\ \frac{ \partial \vec{r}}{\, \partial \beta } &=& \left( \begin{array}{c} r \cos { \alpha } \cos { \beta } \\ r \sin { \alpha } \cos { \beta } \\ - r \sin { \beta } \end{array}\right)\end{eqnarray}$$
Wir erhalten daraus:

$$\begin{eqnarray} { \vec{e} }_{ r} &=& \left( \begin{array}{c} \cos { \alpha } \sin { \beta } \\ \sin { \alpha } \sin { \beta } \\ \cos { \beta } \end{array}\right) \\ { \vec{e} }_{ \alpha } &=& \left( \begin{array}{c} - \sin { \alpha } \\ \cos { \alpha } \\ 0 \end{array}\right) \\ { \vec{e} }_{ \beta } &=& \left( \begin{array}{c} \cos { \alpha } \cos { \beta } \\ \sin { \alpha } \cos { \beta } \\ - \sin { \beta } \end{array}\right)\end{eqnarray}$$

$$\begin{eqnarray} \frac{ \partial \vec{r}}{\, \partial r} &=& { \vec{e} }_{ r} \\ \frac{ \partial \vec{r}}{\, \partial \alpha } &=& r \sin { \beta } { \vec{e} }_{ a} \\ \frac{ \partial \vec{r}}{\, \partial \beta } &=& r { \vec{e} }_{ \beta }\end{eqnarray}$$

Wir können durch Bildung von Skalarprodukten leicht zeigen, dass diese Einheitsvektoren senkrecht aufeinander stehen.

Der Ortsvektor in Kugelkoordinaten lautet

$$ \vec{r} = r { \vec{e} }_{ r}$$

Der Ortsvektor kann sich nur solcher Einheitsvektoren des begleitenden Dreibeins bedienen, die nicht von sich selbst abhängen. Da $ { \vec{e} }_{ a}$ von $ \alpha $ und $ { \vec{e} }_{ \beta }$ von $ \beta $ abhängen, lassen wir beide weg. Jeder Punkt im Raum ist mit dem obigen Ortsvektor erreichbar. Der Ortsvektor ergibt sich auch durch Vergleich von Eq. 10 mit den berechneten Einheitsvektoren in Kugelkoordinaten.

Inverse Transformationsgleichungen

Wir schreiben die Einheitsvektoren wie folgt auf

$$\begin{eqnarray} { \vec{e} }_{ r} &=& \cos { \alpha } \sin { \beta } { \vec{e} }_{ x} + \sin { \alpha } \sin { \beta } { \vec{e} }_{ y} + \cos { \beta } { \vec{e} }_{ z} \\ { \vec{e} }_{ \alpha } &=& - \sin { \alpha } { \vec{e} }_{ x} + \cos { \alpha } { \vec{e} }_{ y} + 0 { \vec{e} }_{ z} \\ { \vec{e} }_{ \beta } &=& \cos { \alpha } \cos { \beta } { \vec{e} }_{ x} + \sin { \alpha } \cos { \beta } { \vec{e} }_{ y} - \sin { \beta } { \vec{e} }_{ z}\end{eqnarray}$$
und lösen das Gleichungssystem mit Hilfe der Cramerschen Regel:

$$ { \vec{e} }_{ x} = \frac{ \left| { \begin{array}{ccc}
{ \vec{e} }_{ r} & \sin { \alpha } \sin { \beta } & \cos { \beta } \\ { \vec{e} }_{ \alpha } & \cos { \alpha } & 0\\ { \vec{e} }_{ \beta } & \sin { \alpha } \cos { \beta } & - \sin { \beta } \\
\end{array}} \right|}{ \left| { \begin{array}{ccc}
\cos { \alpha } \sin { \beta } & \sin { \alpha } \sin { \beta } & \cos { \beta } \\ - \sin { \alpha } & \cos { \alpha } & 0\\ \cos { \alpha } \cos { \beta } & \sin { \alpha } \cos { \beta } & - \sin { \beta } \\
\end{array}} \right|}$$

$$\begin{eqnarray} A &=& - \cos { \alpha } \sin { \beta } \cos { \alpha } \sin { \beta } - \sin { \alpha } \sin { \beta } \sin { \alpha } \sin { \beta } + \cos { \beta } \left( { - \sin { \alpha } \sin { \alpha } \cos { \beta } - \cos { \alpha } \cos { \alpha } \cos { \beta } } \right) \\ A &=& - { \cos { \alpha } }^{ 2} { \sin { \beta } }^{ 2} - { \sin { \alpha } }^{ 2} { \sin { \beta } }^{ 2} - \sin { \alpha } \sin { \alpha } \cos { \beta } \cos { \beta } - \cos { \alpha } \cos { \alpha } \cos { \beta } \cos { \beta } \\ A &=& - { \cos { \alpha } }^{ 2} { \sin { \beta } }^{ 2} - { \sin { \alpha } }^{ 2} { \sin { \beta } }^{ 2} - { \sin { \alpha } }^{ 2} { \cos { \beta } }^{ 2} - { \cos { \alpha } }^{ 2} { \cos { \beta } }^{ 2} \\ A &=& - { \sin { \beta } }^{ 2} \left( { { \cos { \alpha } }^{ 2} + { \sin { \alpha } }^{ 2}} \right) - { \cos { \beta } }^{ 2} \left( { { \sin { \alpha } }^{ 2} + { \cos { \alpha } }^{ 2}} \right) \\ A &=& - { \sin { \beta } }^{ 2} - { \cos { \beta } }^{ 2} \\ A &=& - 1\end{eqnarray}$$
$$\begin{eqnarray} { \vec{e} }_{ x} &=& \frac{ - \cos { \alpha } \sin { \beta } { \vec{e} }_{ r} + \sin { \alpha } { \sin { \beta } }^{ 2} { \vec{e} }_{ \alpha } + \cos { \beta } \left( { \sin { \alpha } \cos { \beta } { \vec{e} }_{ \alpha } - \cos { \alpha } { \vec{e} }_{ \beta }} \right)}{ - 1} \\ { \vec{e} }_{ x} &=& \frac{ - \cos { \alpha } \sin { \beta } { \vec{e} }_{ r} + \sin { \alpha } { \sin { \beta } }^{ 2} { \vec{e} }_{ \alpha } + \sin { \alpha } { \cos { \beta } }^{ 2} { \vec{e} }_{ \alpha } - \cos { \alpha } \cos { \beta } { \vec{e} }_{ \beta }}{ - 1} \\ { \vec{e} }_{ x} &=& \frac{ - \cos { \alpha } \sin { \beta } { \vec{e} }_{ r} + \sin { \alpha } { \vec{e} }_{ \alpha } - \cos { \alpha } \cos { \beta } { \vec{e} }_{ \beta }}{ - 1} \\ { \vec{e} }_{ x} &=& \cos { \alpha } \sin { \beta } { \vec{e} }_{ r} - \sin { \alpha } { \vec{e} }_{ \alpha } + \cos { \alpha } \cos { \beta } { \vec{e} }_{ \beta }\end{eqnarray}$$

$$\begin{eqnarray} { \vec{e} }_{ y} &=& \frac{ \left| { \begin{array}{ccc}
\cos { \alpha } \sin { \beta } & { \vec{e} }_{ r} & \cos { \beta } \\ - \sin { \alpha } & { \vec{e} }_{ a} & 0\\ \cos { \alpha } \cos { \beta } & { \vec{e} }_{ \beta } & - \sin { \beta } \\
\end{array}} \right|}{ \left| { \begin{array}{ccc}
\cos { \alpha } \sin { \beta } & \sin { \alpha } \sin { \beta } & \cos { \beta } \\ - \sin { \alpha } & \cos { \alpha } & 0\\ \cos { \alpha } \cos { \beta } & \sin { \alpha } \cos { \beta } & - \sin { \beta } \\
\end{array}} \right|} \\ { \vec{e} }_{ y} &=& \frac{ - \cos { \alpha } { \sin { \beta } }^{ 2} { \vec{e} }_{ \alpha } - \left( { \sin { \alpha } \sin { \beta } } \right) { \vec{e} }_{ r} + \cos { \beta } \left( { - \sin { \alpha } { \vec{e} }_{ \beta } - \cos { \alpha } \cos { \beta } { \vec{e} }_{ \alpha }} \right)}{ - 1} \\ { \vec{e} }_{ y} &=& \frac{ - \cos { \alpha } { \sin { \beta } }^{ 2} { \vec{e} }_{ \alpha } - \sin { \alpha } \sin { \beta } { \vec{e} }_{ r} - \sin { \alpha } \cos { \beta } { \vec{e} }_{ \beta } - \cos { \alpha } { \cos { \beta } }^{ 2} { \vec{e} }_{ \alpha }}{ - 1} \\ { \vec{e} }_{ y} &=& \frac{ - \cos { \alpha } { \sin { \beta } }^{ 2} { \vec{e} }_{ \alpha } - \sin { \alpha } \sin { \beta } { \vec{e} }_{ r} - \sin { \alpha } \cos { \beta } { \vec{e} }_{ \beta } - \cos { \alpha } { \cos { \beta } }^{ 2} { \vec{e} }_{ \alpha }}{ -1} \\ { \vec{e} }_{ y} &=& \cos { \alpha } { \sin { \beta } }^{ 2} { \vec{e} }_{ \alpha } + \sin { \alpha } \sin { \beta } { \vec{e} }_{ r} + \sin { \alpha } \cos { \beta } { \vec{e} }_{ \beta } + \cos { \alpha } { \cos { \beta } }^{ 2} { \vec{e} }_{ \alpha } \\ { \vec{e} }_{ y} &=& \cos { \alpha } { \vec{e} }_{ \alpha } + \sin { \alpha } \sin { \beta } { \vec{e} }_{ r} + \sin { \alpha } \cos { \beta } { \vec{e} }_{ \beta } \\ { \vec{e} }_{ y} &=& \sin { \alpha } \sin { \beta } { \vec{e} }_{ r} + \cos { \alpha } { \vec{e} }_{ \alpha } + \sin { \alpha } \cos { \beta } { \vec{e} }_{ \beta }\end{eqnarray}$$

$$ { \vec{e} }_{ z} = \frac{ \left| { \begin{array}{ccc}
\cos { \alpha } \sin { \beta } & \sin { \alpha } \sin { \beta } & { \vec{e} }_{ r}\\ - \sin { \alpha } & \cos { \alpha } & { \vec{e} }_{ \alpha }\\ \cos { \alpha } \cos { \beta } & \sin { \alpha } \cos { \beta } & { \vec{e} }_{ \beta }\\
\end{array}} \right|}{ \left| { \begin{array}{ccc}
\cos { \alpha } \sin { \beta } & \sin { \alpha } \sin { \beta } & \cos { \beta } \\ - \sin { \alpha } & \cos { \alpha } & 0\\ \cos { \alpha } \cos { \beta } & \sin { \alpha } \cos { \beta } & - \sin { \beta } \\
\end{array}} \right|}$$

$$\begin{eqnarray} { \vec{e} }_{ z} &=& \frac{ \cos { \alpha } \sin { \beta } \left( { \cos { \alpha } { \vec{e} }_{ \beta } - \sin { \alpha } \cos { \beta } { \vec{e} }_{ \alpha }} \right) - \sin { \alpha } \sin { \beta } \left( { - \sin { \alpha } { \vec{e} }_{ \beta } - \cos { \alpha } \cos { \beta } { \vec{e} }_{ \alpha }} \right) + \left( { - { \sin { \alpha } }^{ 2} \cos { \beta } - { \cos { \alpha } }^{ 2} \cos { \beta } } \right) { \vec{e} }_{ r}}{ - 1} \\ { \vec{e} }_{ z} &=& \frac{ { \cos { \alpha } }^{ 2} \sin { \beta } { \vec{e} }_{ \beta } - \sin { \alpha } \cos { \beta } \cos { \alpha } \sin { \beta } { \vec{e} }_{ \alpha } - \left( { - { \sin { \alpha } }^{ 2} \sin { \beta } { \vec{e} }_{ \beta } - \sin { \alpha } \sin { \beta } \cos { \alpha } \cos { \beta } { \vec{e} }_{ \alpha }} \right) - \left( { { \sin { \alpha } }^{ 2} \cos { \beta } + { \cos { \alpha } }^{ 2} \cos { \beta } } \right) { \vec{e} }_{ r}}{ - 1} \\ { \vec{e} }_{ z} &=& \frac{ { \cos { \alpha } }^{ 2} \sin { \beta } { \vec{e} }_{ \beta } - \sin { \alpha } \cos { \beta } \cos { \alpha } \sin { \beta } { \vec{e} }_{ \alpha } + { \sin { \alpha } }^{ 2} \sin { \beta } { \vec{e} }_{ \beta } + \sin { \alpha } \sin { \beta } \cos { \alpha } \cos { \beta } { \vec{e} }_{ \alpha } - \left( { { \sin { \alpha } }^{ 2} + { \cos { \alpha } }^{ 2}} \right) \cos { \beta } { \vec{e} }_{ r}}{ -1} \\ { \vec{e} }_{ z} &=& \frac{ \sin { \beta } { \vec{e} }_{ \beta } - \left( { { \sin { \alpha } }^{ 2} + { \cos { \alpha } }^{ 2}} \right) \cos { \beta } { \vec{e} }_{ r}}{ -1} \\ { \vec{e} }_{ z} &=& \frac{ \sin { \beta } { \vec{e} }_{ \beta } - \cos { \beta } { \vec{e} }_{ r}}{ -1} \\ { \vec{e} }_{ z} &=& \cos { \beta } { \vec{e} }_{ r} - \sin { \beta } { \vec{e} }_{ \beta }\end{eqnarray}$$
Zusammengefasst lauten die invsersen Transformationsgleichungen also

$$\begin{eqnarray} { \vec{e} }_{ x} &=& \cos { \alpha } \sin { \beta } { \vec{e} }_{ r} - \sin { \alpha } { \vec{e} }_{ \alpha } + \cos { \alpha } \cos { \beta } { \vec{e} }_{ \beta } \\ { \vec{e} }_{ y} &=& \sin { \alpha } \sin { \beta } { \vec{e} }_{ r} + \cos { \alpha } { \vec{e} }_{ \alpha } + \sin { \alpha } \cos { \beta } { \vec{e} }_{ \beta } \\ { \vec{e} }_{ z} &=& \cos { \beta } { \vec{e} }_{ r} - \sin { \beta } { \vec{e} }_{ \beta }\end{eqnarray}$$

Geschwindigkeit und Beschleunigung in Kugelkoordinaten

Für die Berechnung der Geschwindigkeit und Beschleunigung in Kugelkoordianten benötigen wir die zeitlichen Ableitungen der Einheitsvektoren.

$$ \frac{\, \vec{dr}}{\, dt} = \frac{\, dr}{\, dt} { \vec{e} }_{ r} + r \frac{ { \, \vec{de} }_{ r}}{\, dt}$$

$$\begin{eqnarray} \frac{ { \, \vec{de} }_{ r}}{\, dt} &=& \frac{ { \, \vec{de} }_{ r}}{\, dr} \frac{\, dr}{\, dt} + \frac{ { \, \vec{de} }_{ r}}{\, d\alpha } \frac{\, d\alpha }{\, dt} + \frac{ { \, \vec{de} }_{ r}}{\, d\beta } \frac{\, d\beta }{\, dt} \\ \frac{ { \, \vec{de} }_{ r}}{\, dt} &=& \left( \begin{array}{c} - \sin { \alpha } \sin { \beta } \\ \cos { \alpha } \sin { \beta } \\ 0 \end{array}\right) \frac{\, d\alpha }{\, dt} + \left( \begin{array}{c} \cos { \alpha } \cos { \beta } \\ \sin { \alpha } \cos { \beta } \\ - \sin { \beta } \end{array}\right) \frac{\, d\beta }{\, dt} \\ \frac{ { \, \vec{de} }_{ r}}{\, dt} &=& \sin { \beta } \frac{\, d\alpha }{\, dt} { \vec{e} }_{ \alpha } + \frac{\, d\beta }{\, dt} { \vec{e} }_{ \beta }\end{eqnarray}$$

$$\begin{eqnarray} \frac{ { \, \vec{de} }_{ \alpha }}{\, dt} &=& \frac{ { \, \vec{de} }_{ \alpha }}{\, dr} \frac{\, dr}{\, dt} + \frac{ { \, \vec{de} }_{ \alpha }}{\, d\alpha } \frac{\, d\alpha }{\, dt} + \frac{ { \, \vec{de} }_{ \alpha }}{\, d\beta } \frac{\, d\beta }{\, dt} \\ \frac{ { \, \vec{de} }_{ \alpha }}{\, dt} &=& \left( \begin{array}{c} - \cos { \alpha } \\ - \sin { \alpha } \\ 0 \end{array}\right) \frac{\, d\alpha }{\, dt} \\ \frac{ { \, \vec{de} }_{ \alpha }}{\, dt} &=& - \left( { \sin { \beta } { \vec{e} }_{ r} + \cos { \beta } { \vec{e} }_{ \beta }} \right) \frac{\, d\alpha }{\, dt} \\ \frac{ { \, \vec{de} }_{ \alpha }}{\, dt} &=& - \sin { \beta } \frac{\, d\alpha }{\, dt} { \vec{e} }_{ r} - \cos { \beta } \frac{\, d\alpha }{\, dt} { \vec{e} }_{ \beta }\end{eqnarray}$$

$$\begin{eqnarray} \frac{ { \, \vec{de} }_{ \beta }}{\, dt} &=& \frac{ { \, \vec{de} }_{ \beta }}{\, dr} \frac{\, dr}{\, dt} + \frac{ { \, \vec{de} }_{ \beta }}{\, d\alpha } \frac{\, d\alpha }{\, dt} + \frac{ { \, \vec{de} }_{ \beta }}{\, d\beta } \frac{\, d\beta }{\, dt} \\ \frac{ { \, \vec{de} }_{ \beta }}{\, dt} &=& \left( \begin{array}{c} - \sin { \alpha } \cos { \beta } \\ \cos { \alpha } \cos { \beta } \\ 0 \end{array}\right) \frac{\, d\alpha }{\, dt} + \left( \begin{array}{c} - \cos { \alpha } \sin { \beta } \\ - \sin { \alpha } \sin { \beta } \\ - \cos { \beta } \end{array}\right) \frac{\, d\beta }{\, dt} \\ \frac{ { \, \vec{de} }_{ \beta }}{\, dt} &=& \cos { \beta } \frac{\, d\alpha }{\, dt} { \vec{e} }_{ \alpha } - \frac{\, d\beta }{\, dt} { \vec{e} }_{ r} \\ \frac{ { \, \vec{de} }_{ \beta }}{\, dt} &=& - \frac{\, d\beta }{\, dt} { \vec{e} }_{ r} + \cos { \beta } \frac{\, d\alpha }{\, dt} { \vec{e} }_{ \alpha }\end{eqnarray}$$
Zusammengfasst lauten die Ableitungen der Einheitsvektoren in Kugelkoordinaten:

$$\begin{eqnarray} \frac{ { \, \vec{de} }_{ r}}{\, dt} &=& \sin { \beta } \frac{\, d\alpha }{\, dt} { \vec{e} }_{ \alpha } + \frac{\, d\beta }{\, dt} { \vec{e} }_{ \beta } \\ \frac{ { \, \vec{de} }_{ \alpha }}{\, dt} &=& - \sin { \beta } \frac{\, d\alpha }{\, dt} { \vec{e} }_{ r} - \cos { \beta } \frac{\, d\alpha }{\, dt} { \vec{e} }_{ \beta } \\ \frac{ { \, \vec{de} }_{ \beta }}{\, dt} &=& - \frac{\, d\beta }{\, dt} { \vec{e} }_{ r} + \cos { \beta } \frac{\, d\alpha }{\, dt} { \vec{e} }_{ \alpha }\end{eqnarray}$$

Damit lassen sich die Geschwindigkeit und Beschleuinigung in Kugelkoordinaten leicht angeben:

$$\begin{eqnarray} \frac{\, \vec{dr}}{\, dt} &=& \frac{\, dr}{\, dt} { \vec{e} }_{ r} + r \frac{ { \, \vec{de} }_{ r}}{\, dt} \\ \frac{\, \vec{dr}}{\, dt} &=& \frac{\, dr}{\, dt} { \vec{e} }_{ r} + r \left( { \sin { \beta } \frac{\, d\alpha }{\, dt} { \vec{e} }_{ \alpha } + \frac{\, d\beta }{\, dt} { \vec{e} }_{ \beta }} \right) \\ \frac{\, \vec{dr}}{\, dt} &=& \frac{\, dr}{\, dt} { \vec{e} }_{ r} + r \sin { \beta } \frac{\, d\alpha }{\, dt} { \vec{e} }_{ \alpha } + r \frac{\, d\beta }{\, dt} { \vec{e} }_{ \beta }\end{eqnarray}$$

Gradient in Kugelkoordinaten

Es sei ein Skalarfeld $ \Phi $ gegeben. Der Gradient in Kugelkoordinaten ergibt sich wie folgt. Das totale Differential lautet allgemein

$$\, d\Phi = \left( { \nabla \Phi } \right) \cdot \, \vec{dr}$$
und in Kugelkoordinaten

$$\, d\Phi = \frac{\, \partial \Phi }{\, \partial r}\, dr + \frac{\, \partial \Phi }{\, \partial \alpha }\, d\alpha + \frac{\, \partial \Phi }{\, \partial \beta }\, d\beta $$

Wir können $\, \vec{dr}$ wie folgt darstellen:

$$\begin{eqnarray}\, \vec{dr} &=& \frac{\, \vec{\partial r}}{\, \partial r}\, dr + \frac{\, \vec{\partial r}}{\, \partial \alpha }\, d\alpha + \frac{\, \vec{\partial r}}{\, \partial \beta }\, d\beta \\ \, \vec{dr} &=& { \vec{e} }_{ r}\, dr + r \sin { \beta } { \vec{e} }_{ \alpha }\, d\alpha + r { \vec{e} }_{ \beta }\, d\beta \end{eqnarray}$$
Durch Koeffizientenvergleich ergibt sich dann

$$ \nabla \Phi = { G }_{ r} { \vec{e} }_{ r} + { G }_{ \alpha } { \vec{e} }_{ \alpha } + { G }_{ \beta } { \vec{e} }_{ \beta }$$

$$ \frac{\, \partial \Phi }{\, \partial r}\, dr + \frac{\, \partial \Phi }{\, \partial \alpha }\, d\alpha + \frac{\, \partial \Phi }{\, \partial \beta }\, d\beta = { G }_{ r}\, dr + { G }_{ \alpha } r \sin { \beta } \, d\alpha + { G }_{ \beta } r\, d\beta $$

$$\begin{eqnarray} { G }_{ r} &=& \frac{\, \partial \Phi }{\, \partial r} \\ { G }_{ a} &=& \frac{ 1}{ r \sin { \beta } } \frac{\, \partial \Phi }{\, \partial \alpha } \\ { G }_{ \beta } &=& \frac{ 1}{ r} \frac{\, \partial \Phi }{\, \partial \beta }\end{eqnarray}$$
$$ \nabla \Phi = \frac{\, \partial \Phi }{\, \partial r} { \vec{e} }_{ r} + \frac{ 1}{ r \sin { \beta } } \frac{\, \partial \Phi }{\, \partial \alpha } { \vec{e} }_{ \alpha } + \frac{ 1}{ r} \frac{\, \partial \Phi }{\, \partial \beta } { \vec{e} }_{ \beta } \tag{1}$$

Divergenz in Kugelkoordinaten

Die Divergenz an einem gegebenen Punkt ist definiert durch

$$ \mbox{div}\, { \vec{A}} = \frac{ 1}{ \Delta V} \int \vec{A} \cdot \, \vec{dS}$$

Das inifinitesimale Volumenelement in Kugelkoordinaten ist gegeben durch

$$\, dV = { r }^{ 2} \sin { \beta } \, d\beta \, d\alpha \, dr$$

Der Fluss in Richtung $ { \vec{e} }_{ r}$ ist gegeben durch

$$\begin{eqnarray} { F }_{ r} &=& { A }_{ r} { r }^{ 2} \sin { \beta } \, d\beta \, d\alpha \\ { F }_{ r'} &=& { A }_{ r} { r }^{ 2} \sin { \beta } \, d\beta \, d\alpha + \frac{ \partial \left( { { A }_{ r} { r }^{ 2} \sin { \beta } \, d\beta \, d\alpha } \right)}{\, \partial r}\, dr\end{eqnarray}$$
$$ F = { F }_{ r'} - { F }_{ r} = \sin { \beta } \frac{\, \partial \left( { { A }_{ r} { r }^{ 2}} \right)}{\, \partial r}\, d\beta \, d\alpha \, dr$$

Der Fluss in Richtung $ { \vec{e} }_{ \beta }$ is gegeben durch

$$\begin{eqnarray} { F }_{ \beta } &=& { A }_{ \beta } r\, d\alpha \sin { \beta } \, dr \\ { F }_{ \beta '} &=& { A }_{ \beta } r\, d\alpha \sin { \beta } \, dr + \frac{ \partial \left( { { A }_{ \beta } r\, d\alpha \sin { \beta } \, dr} \right)}{\, \partial \beta }\, d\beta \end{eqnarray}$$
$$ F = { F }_{ \beta '} - { F }_{ \beta } = r \frac{ \partial \left( { { A }_{ \beta } \sin { \beta } } \right)}{\, \partial \beta }\, d\beta \, d\alpha \, dr$$

Der Fluss in Richtung $ { \vec{e} }_{ \alpha }$ ist gegeben durch

$$\begin{eqnarray} { F }_{ \alpha } &=& { A }_{ \alpha } r\, d\beta \, dr \\ { F }_{ \alpha '} &=& { A }_{ \alpha } r\, d\beta \, dr + \frac{ \partial \left( { { A }_{ \alpha } r\, d\beta \, dr} \right)}{\, \partial \alpha }\, d\alpha \end{eqnarray}$$
$$ F = { F }_{ \alpha '} - { F }_{ \alpha } = r \frac{ \partial { A }_{ \alpha }}{\, \partial \alpha }\, d\beta \, d\alpha \, dr$$

Der Gesamtfluss ergibt sich dann zu

$$ { F }_{ ges} = \left( { \sin { \beta } \frac{\, \partial { A }_{ r} { r }^{ 2}}{\, \partial r} + r \frac{ \partial { A }_{ \beta } \sin { \beta } }{\, \partial \beta } + r \frac{ \partial { A }_{ \alpha }}{\, \partial \alpha }} \right)\, d\beta \, d\alpha \, dr$$
und damit die Divergenz zu

$$ \mbox{div}\, { \vec{A}} = \frac{ { F }_{ ges}}{ { r }^{ 2} \sin { \beta } \, d\beta \, d\alpha \, dr}$$

$$ \mbox{div}\, { \vec{A}} = \frac{ 1}{ { r }^{ 2}} \frac{\partial \left( { { A }_{ r} { r }^{ 2}} \right)}{\, \partial r} + \frac{ 1}{ r \sin { \beta } } \frac{\partial \left( { { A }_{ \beta } \sin { \beta } } \right)}{\, \partial \beta } + \frac{ 1}{ r \sin { \beta } } \frac{\partial \left( { { A }_{ \alpha }} \right)}{\, \partial \alpha } \tag{11}$$

Rotation in Kugelkoordinaten

Ihre geometrische Definition führt die Rotation auf ein Linienintegral zurück.

$$ \vec{n} \cdot \mbox{rot}\, { \vec{A}} = \frac{ \int \vec{A} \cdot \, \vec{dl}}{ \Delta F}$$

Krummlinige Koordinatensysteme

Jeder Ortsvektor läßt sich in beliebigen Koordinaten $ { q }_{ i}$ (z.B. $ { q }_{ 1} = r$, $ { q }_{ 2} = \alpha $, $ { q }_{ 3} = \beta $) mit Hilfe von im Allgemeinen vom Ortspunkt abhängigen Einheitsvektoren $ { \vec{e} }_{ i}$ wie folgt darstellen:

$$ \vec{r} = \sum { a }_{ i} { \vec{e} }_{ i}$$

Die Einheitsvektoren an einem gegebenen Ortspunkt ergeben sich aus

$$ { \vec{e} }_{ i} = \frac{ \frac{ \partial \vec{r}}{ { \, \partial q }_{ i}}}{ \left| { \frac{ \partial \vec{r}}{ { \, \partial q }_{ i}}} \right|}$$
oder

$$ \frac{ \partial \vec{r}}{ { \, \partial q }_{ i}} = { h }_{ i} { \vec{e} }_{ i}$$

mit

$$ { h }_{ i} = \left| { \frac{ \partial \vec{r}}{ { \, \partial q }_{ i}}} \right|$$

Die $ { h }_{ i}$ nennt man Skalenfaktoren. Die Einheitsvektoren $ { \vec{e} }_{ i}$ zeigen in die Richtung von wachsendem $ { q }_{ i}$ entlang der $ { q }_{ i}$-Koordinatenlinie.

Bogenlänge

Die Länge eines Bogens in krummlinigen Koordinaten ergibt sich mit

$$\, \vec{dr} = \sum \frac{ \partial \vec{r}}{ { \, \partial q }_{ i}} { \, dq }_{ i} = \sum { h }_{ i} { \, dq }_{ i} { \vec{e} }_{ i}$$

und

$$ { \, ds }^{ 2} =\, \vec{dr} \cdot \, \vec{dr}$$
wir folgt:

$$ { \, ds }^{ 2} = \sum_{ i = 1}^{ N} { h }_{ i} { \, dq }_{ i} { \vec{e} }_{ i} \cdot \sum_{ j = 1}^{ N} { h }_{ j} { \, dq }_{ j} { \vec{e} }_{ j}$$

Für Koordinatensysteme mit orthogonalen Einheitsvektoren ($ { \delta }_{ ij} = 0$ für $ i \ne j$) führt dies zu ...

Gradient

$$ \nabla = { \vec{e} }_{ q1} \left( { \frac{ 1}{ { h }_{ 1}} \frac{ \partial }{ { \, \partial q }_{ 1}}} \right) + { \vec{e} }_{ q2} \left( { \frac{ 1}{ { h }_{ 2}} \frac{ \partial }{ { \, \partial q }_{ 2}}} \right) + { \vec{e} }_{ q3} \left( { \frac{ 1}{ { h }_{ 3}} \frac{ \partial }{ { \, \partial q }_{ 3}}} \right)$$
Beispiel: Zylinderkordinaten

$$ \nabla = { \vec{e} }_{ r} \left( { \frac{ 1}{ { h }_{ r}} \frac{ \partial }{\, \partial r}} \right) + { \vec{e} }_{ \varphi } \left( { \frac{ 1}{ { h }_{ \varphi }} \frac{ \partial }{\, \partial \varphi }} \right) + { \vec{e} }_{ z} \left( { \frac{ 1}{ { h }_{ z}} \frac{ \partial }{\, \partial z}} \right)$$

$$\begin{eqnarray} \frac{ \partial \vec{r}}{\, \partial r} &=& \left( \begin{array}{c} \cos { \varphi } \\ \sin { \varphi } \\ 0 \end{array}\right) \\ \frac{ \partial \vec{r}}{\, \partial \varphi } &=& \left( \begin{array}{c} - r \sin { \varphi } \\ r \cos { \varphi } \\ 0 \end{array}\right) \\ \frac{ \partial \vec{r}}{\, \partial z} &=& \left( \begin{array}{c} 0\\ 0\\ 1 \end{array}\right)\end{eqnarray}$$

$$ \nabla = { \vec{e} }_{ r} \frac{ \partial }{\, \partial r} + { \vec{e} }_{ \varphi } \left( { \frac{ 1}{ r} \frac{ \partial }{\, \partial \varphi }} \right) + { \vec{e} }_{ z} \frac{ \partial }{\, \partial z}$$

Divergenz


$$ \mbox{div}\, { \vec{A}} = \frac{ 1}{ { h }_{ 1} { h }_{ 2} { h }_{ 3}} \left( { \frac{ \partial }{ { \, \partial q }_{ 1}} \left( { { A }_{ 1} { h }_{ 2} { h }_{ 3}} \right) + \frac{ \partial }{ { \, \partial q }_{ 2}} \left( { { A }_{ 2} { h }_{ 1} { h }_{ 3}} \right) + \frac{ \partial }{ { \, \partial q }_{ 3}} \left( { { A }_{ 3} { h }_{ 1} { h }_{ 2}} \right)} \right)$$

Beispiel: Zylinderkoordinaten

$$\begin{eqnarray} \mbox{div}\, { \vec{A}} &=& \frac{ 1}{ { h }_{ r} { h }_{ \varphi } { h }_{ z}} \left( { \frac{ \partial }{\, \partial r} \left( { { A }_{ r} { h }_{ \varphi } { h }_{ z}} \right) + \frac{ \partial }{\, \partial \varphi } \left( { { A }_{ \varphi } { h }_{ r} { h }_{ z}} \right) + \frac{ \partial }{\, \partial z} \left( { { A }_{ z} { h }_{ r} { h }_{ \varphi }} \right)} \right) \\ \mbox{div}\, { \vec{A}} &=& \frac{ 1}{ r} \left( { \frac{ \partial }{\, \partial r} \left( { { A }_{ r} r} \right) + \frac{ \partial }{\, \partial \varphi } { A }_{ \varphi } + \frac{ \partial }{\, \partial z} \left( { { A }_{ z} r} \right)} \right)\end{eqnarray}$$

Rotation

$$ \mbox{rot}\, { \vec{A}} = \frac{ 1}{ { h }_{ 1} { h }_{ 2} { h }_{ 3}} \left| { \begin{array}{ccc}
{ h }_{ 1} { \vec{e} }_{ q1} & { h }_{ 2} { \vec{e} }_{ 2} & { h }_{ 3} { \vec{e} }_{ 3}\\ \frac{ \partial }{ { \, \partial q }_{ 1}} & \frac{ \partial }{ { \, \partial q }_{ 2}} & \frac{ \partial }{ { \, \partial q }_{ 3}}\\ { A }_{ 1} { h }_{ 1} & { A }_{ 2} { h }_{ 2} & { A }_{ 3} { h }_{ 3}\\
\end{array}} \right|$$

Beispiel: Zylinderkoordinaten

$$ \mbox{rot}\, { \vec{A}} = \frac{ 1}{ r} \left| { \begin{array}{ccc}
{ \vec{e} }_{ r} & r { \vec{e} }_{ \varphi } & { \vec{e} }_{ z}\\ \frac{ \partial }{\, \partial r} & \frac{ \partial }{\, \partial \varphi } & \frac{ \partial }{\, \partial z}\\ { A }_{ r} & r { A }_{ \varphi } & { A }_{ z}\\
\end{array}} \right|$$

Beispiel: Kugelkoordinaten

$$ \frac{ \partial \vec{r}}{\, \partial r} = \left( \begin{array}{c} \cos { \alpha } \sin { \beta } \\ \sin { \alpha } \sin { \beta } \\ \cos { \beta } \end{array}\right)$$

$$ { h }_{ 1} = \left| { \frac{ \partial \vec{r}}{\, \partial r}} \right| = { \cos { \alpha } }^{ 2} { \sin { \beta } }^{ 2} + { \sin { \alpha } }^{ 2} { \sin { \beta } }^{ 2} + { \cos { \beta } }^{ 2} = 1$$

$$ \frac{ \partial \vec{r}}{\, \partial \alpha } = \left( \begin{array}{c} - r \sin { \alpha } \sin { \beta } \\ r \cos { \alpha } \sin { \beta } \\ 0 \end{array}\right)$$

$$ { h }_{ 2} = \left| { \frac{ \partial \vec{r}}{\, \partial \alpha }} \right| = r \sin { \beta } $$

$$ \frac{ \partial \vec{r}}{\, \partial \beta } = \left( \begin{array}{c} r \cos { \alpha } \cos { \beta } \\ r \sin { \alpha } \cos { \beta } \\ - r \sin { \beta } \end{array}\right)$$

$$ { h }_{ 3} = \left| { \frac{ \partial \vec{r}}{\, \partial \beta }} \right| = \sqrt{ { r }^{ 2} { \cos { \beta } }^{ 2} + { r }^{ 2} { \sin { \beta } }^{ 2}} = r$$

$$ \mbox{rot}\, { \vec{A}} = \frac{ 1}{ { r }^{ 2} \sin { \beta } } \left| { \begin{array}{ccc}
{ \vec{e} }_{ r} & r \sin { \beta } { \vec{e} }_{ \alpha } & r { \vec{e} }_{ \beta }\\ \frac{ \partial }{\, \partial r} & \frac{ \partial }{\, \partial \alpha } & \frac{ \partial }{\, \partial \beta }\\ { A }_{ r} & r \sin { \beta } { A }_{ \alpha } & r { A }_{ \beta }\\
\end{array}} \right|$$

$$\begin{eqnarray} \mbox{rot}\, { \vec{A}} &=& \frac{ 1}{ { r }^{ 2} \sin { \beta } } \left( { { \vec{e} }_{ r} \left( { \frac{ \partial \left( { r { A }_{ \beta }} \right)}{\, \partial \alpha } - \frac{ \partial \left( { r \sin { \beta } { A }_{ \alpha }} \right)}{\, \partial \beta }} \right) - r \sin { \beta } { \vec{e} }_{ \alpha } \left( { \frac{ \partial \left( { r { A }_{ \beta }} \right)}{\, \partial r} - \frac{ \partial { A }_{ r}}{\, \partial \beta }} \right) + r { \vec{e} }_{ \beta } \left( { \frac{ \partial \left( { r \sin { \beta } { A }_{ \alpha }} \right)}{\, \partial r} - \frac{ \partial { A }_{ r}}{\, \partial \alpha }} \right)} \right) \\ \mbox{rot}\, { \vec{A}} &=& { \vec{e} }_{ r} \frac{ 1}{ { r }^{ 2} \sin { \beta } } \left( { \frac{ \partial \left( { r { A }_{ \beta }} \right)}{\, \partial \alpha } - \frac{ \partial \left( { r \sin { \beta } { A }_{ \alpha }} \right)}{\, \partial \beta }} \right) - \frac{ 1}{ r} { \vec{e} }_{ \alpha } \left( { \frac{ \partial \left( { r { A }_{ \beta }} \right)}{\, \partial r} - \frac{ \partial { A }_{ r}}{\, \partial \beta }} \right) + \frac{ 1}{ r \sin { \beta } } { \vec{e} }_{ \beta } \left( { \frac{ \partial \left( { r \sin { \beta } { A }_{ \alpha }} \right)}{\, \partial r} - \frac{ \partial { A }_{ r}}{\, \partial \alpha }} \right) \\ \mbox{rot}\, { \vec{A}} &=& \frac{ 1}{ r \sin { \beta } } \left( { \frac{ \partial { A }_{ \beta }}{\, \partial \alpha } - \frac{ \partial \sin { \beta } { A }_{ \alpha }}{\, \partial \beta }} \right) { \vec{e} }_{ r} + \frac{ 1}{ r} \left( { \frac{ \partial { A }_{ r}}{\, \partial \beta } - \frac{ \partial r { A }_{ \beta }}{\, \partial r}} \right) { \vec{e} }_{ \alpha } + \frac{ 1}{ r} \left( { \frac{ \partial r { A }_{ \alpha }}{\, \partial r} - \frac{ 1}{ \sin { \beta } } \frac{ \partial { A }_{ r}}{\, \partial \alpha }} \right) { \vec{e} }_{ \beta }\end{eqnarray}$$

Vektoridentitäten

Quelle: http://wwwex.physik.uni-ulm.de/lehre/krm-2008-2009/node67.html

$$ \vec{a} \times \vec{b} = - \vec{b} \times \vec{a}$$

$$\begin{eqnarray} \vec{a} \times \left( { \vec{b} \times \vec{c}} \right) &=& \left( { \vec{a} \cdot \vec{c}} \right) \vec{b} - \left( { \vec{a} \cdot \vec{b}} \right) \vec{c} \\ \vec{a} \times \left( { \vec{b} \times \vec{c}} \right) &=& \left( { \vec{a} \cdot \vec{c}} \right) \vec{b} - \left( { \vec{a} \cdot \vec{b}} \right) \vec{c}\end{eqnarray}$$
$$ \left( { \vec{a} \times \vec{b}} \right) \cdot \vec{c} = \left( { \vec{b} \times \vec{c}} \right) \cdot \vec{a}$$

$$\begin{eqnarray} \mbox{div}\, \left( { \vec{B} \times \vec{C}} \right) &=& \vec{C} \cdot \mbox{rot}\, { \vec{B}} - \vec{B} \cdot \mbox{rot}\, { \vec{C}} \\ \mbox{div}\, \left( { \vec{A} \cdot \vec{B}} \right) &=& \frac{ \vec{A} \cdot \vec{B}}{ \left| { \vec{A}} \right|} \\ \mbox{rot}\, \left( { \varphi \vec{a}} \right) &=& \mbox{grad}\, { \varphi } \times \vec{a} + \varphi \mbox{rot}\, { \vec{a}} \\ \mbox{div}\, \left( { \varphi \vec{a}} \right) &=& \mbox{grad}\, { \varphi } \vec{a} + \varphi \mbox{div}\, { \vec{a}} \end{eqnarray}$$
$$ \mbox{rot}\, \left( { \vec{a} \times \vec{b}} \right) = \left( { \vec{b} \cdot \nabla } \right) \vec{a} - \left( { \vec{a} \cdot \nabla } \right) \vec{b} + a \mbox{div}\, { \vec{b}} - b \mbox{div}\, { \vec{a}} $$

$$\begin{eqnarray} \mbox{rot}\, \left( { \mbox{rot}\, { \vec{a}} } \right) &=& \mbox{grad}\, \left( { \mbox{div}\, { \vec{a}} } \right) - \mbox{div}\, \left( { \mbox{grad}\, { \vec{a}} } \right) \\ \nabla \times \left( { \nabla \times \vec{B}} \right) &=& \nabla \left( { \nabla \cdot \vec{B}} \right) - \vec{B} \\ \nabla \times \left( { \nabla \times \vec{A}} \right) &=& \nabla \left( { \nabla \cdot \vec{A}} \right) - { \nabla }^{ 2} \vec{A}\end{eqnarray}$$